Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\times 2}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\times 2}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{28}}{2}
36 ni -8 ga qo'shish.
x=\frac{-6±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-3
-6+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-3
-6-2\sqrt{7} ni 2 ga bo'lish.
x^{2}+6x+2=\left(x-\left(\sqrt{7}-3\right)\right)\left(x-\left(-\sqrt{7}-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -3+\sqrt{7} ga va x_{2} uchun -3-\sqrt{7} ga bo‘ling.