Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va 1 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{32}}{2}
36 ni -4 ga qo'shish.
x=\frac{-6±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{2}-6}{2}
x=\frac{-6±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 4\sqrt{2} ga qo'shish.
x=2\sqrt{2}-3
-6+4\sqrt{2} ni 2 ga bo'lish.
x=\frac{-4\sqrt{2}-6}{2}
x=\frac{-6±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 4\sqrt{2} ni ayirish.
x=-2\sqrt{2}-3
-6-4\sqrt{2} ni 2 ga bo'lish.
x=2\sqrt{2}-3 x=-2\sqrt{2}-3
Tenglama yechildi.
x^{2}+6x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
x^{2}+6x=-1
O‘zidan 1 ayirilsa 0 qoladi.
x^{2}+6x+3^{2}=-1+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=-1+9
3 kvadratini chiqarish.
x^{2}+6x+9=8
-1 ni 9 ga qo'shish.
\left(x+3\right)^{2}=8
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=2\sqrt{2} x+3=-2\sqrt{2}
Qisqartirish.
x=2\sqrt{2}-3 x=-2\sqrt{2}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.