x ^ { 2 } + 5 x - 14 \quad \text { 2 } \quad 3 x ^ { 2 } + 20 x + 25
Baholash
25+25x-83x^{2}
Omil
-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+5x-28\times 3x^{2}+20x+25
28 hosil qilish uchun 14 va 2 ni ko'paytirish.
x^{2}+5x-84x^{2}+20x+25
84 hosil qilish uchun 28 va 3 ni ko'paytirish.
-83x^{2}+5x+20x+25
-83x^{2} ni olish uchun x^{2} va -84x^{2} ni birlashtirish.
-83x^{2}+25x+25
25x ni olish uchun 5x va 20x ni birlashtirish.
factor(x^{2}+5x-28\times 3x^{2}+20x+25)
28 hosil qilish uchun 14 va 2 ni ko'paytirish.
factor(x^{2}+5x-84x^{2}+20x+25)
84 hosil qilish uchun 28 va 3 ni ko'paytirish.
factor(-83x^{2}+5x+20x+25)
-83x^{2} ni olish uchun x^{2} va -84x^{2} ni birlashtirish.
factor(-83x^{2}+25x+25)
25x ni olish uchun 5x va 20x ni birlashtirish.
-83x^{2}+25x+25=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-25±\sqrt{25^{2}-4\left(-83\right)\times 25}}{2\left(-83\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-25±\sqrt{625-4\left(-83\right)\times 25}}{2\left(-83\right)}
25 kvadratini chiqarish.
x=\frac{-25±\sqrt{625+332\times 25}}{2\left(-83\right)}
-4 ni -83 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{625+8300}}{2\left(-83\right)}
332 ni 25 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{8925}}{2\left(-83\right)}
625 ni 8300 ga qo'shish.
x=\frac{-25±5\sqrt{357}}{2\left(-83\right)}
8925 ning kvadrat ildizini chiqarish.
x=\frac{-25±5\sqrt{357}}{-166}
2 ni -83 marotabaga ko'paytirish.
x=\frac{5\sqrt{357}-25}{-166}
x=\frac{-25±5\sqrt{357}}{-166} tenglamasini yeching, bunda ± musbat. -25 ni 5\sqrt{357} ga qo'shish.
x=\frac{25-5\sqrt{357}}{166}
-25+5\sqrt{357} ni -166 ga bo'lish.
x=\frac{-5\sqrt{357}-25}{-166}
x=\frac{-25±5\sqrt{357}}{-166} tenglamasini yeching, bunda ± manfiy. -25 dan 5\sqrt{357} ni ayirish.
x=\frac{5\sqrt{357}+25}{166}
-25-5\sqrt{357} ni -166 ga bo'lish.
-83x^{2}+25x+25=-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{25-5\sqrt{357}}{166} ga va x_{2} uchun \frac{25+5\sqrt{357}}{166} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}