Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=-49
Ikkala tarafdan 49 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x=7i x=-7i
Tenglama yechildi.
x^{2}+49=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 49}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va 49 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 49}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-196}}{2}
-4 ni 49 marotabaga ko'paytirish.
x=\frac{0±14i}{2}
-196 ning kvadrat ildizini chiqarish.
x=7i
x=\frac{0±14i}{2} tenglamasini yeching, bunda ± musbat.
x=-7i
x=\frac{0±14i}{2} tenglamasini yeching, bunda ± manfiy.
x=7i x=-7i
Tenglama yechildi.