x uchun yechish
x=5\sqrt{19}-20\approx 1,794494718
x=-5\sqrt{19}-20\approx -41,794494718
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+40x-75=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{40^{2}-4\left(-75\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 40 ni b va -75 ni c bilan almashtiring.
x=\frac{-40±\sqrt{1600-4\left(-75\right)}}{2}
40 kvadratini chiqarish.
x=\frac{-40±\sqrt{1600+300}}{2}
-4 ni -75 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{1900}}{2}
1600 ni 300 ga qo'shish.
x=\frac{-40±10\sqrt{19}}{2}
1900 ning kvadrat ildizini chiqarish.
x=\frac{10\sqrt{19}-40}{2}
x=\frac{-40±10\sqrt{19}}{2} tenglamasini yeching, bunda ± musbat. -40 ni 10\sqrt{19} ga qo'shish.
x=5\sqrt{19}-20
-40+10\sqrt{19} ni 2 ga bo'lish.
x=\frac{-10\sqrt{19}-40}{2}
x=\frac{-40±10\sqrt{19}}{2} tenglamasini yeching, bunda ± manfiy. -40 dan 10\sqrt{19} ni ayirish.
x=-5\sqrt{19}-20
-40-10\sqrt{19} ni 2 ga bo'lish.
x=5\sqrt{19}-20 x=-5\sqrt{19}-20
Tenglama yechildi.
x^{2}+40x-75=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+40x-75-\left(-75\right)=-\left(-75\right)
75 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+40x=-\left(-75\right)
O‘zidan -75 ayirilsa 0 qoladi.
x^{2}+40x=75
0 dan -75 ni ayirish.
x^{2}+40x+20^{2}=75+20^{2}
40 ni bo‘lish, x shartining koeffitsienti, 2 ga 20 olish uchun. Keyin, 20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+40x+400=75+400
20 kvadratini chiqarish.
x^{2}+40x+400=475
75 ni 400 ga qo'shish.
\left(x+20\right)^{2}=475
x^{2}+40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+20\right)^{2}}=\sqrt{475}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+20=5\sqrt{19} x+20=-5\sqrt{19}
Qisqartirish.
x=5\sqrt{19}-20 x=-5\sqrt{19}-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}