Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+40x-75=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{40^{2}-4\left(-75\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 40 ni b va -75 ni c bilan almashtiring.
x=\frac{-40±\sqrt{1600-4\left(-75\right)}}{2}
40 kvadratini chiqarish.
x=\frac{-40±\sqrt{1600+300}}{2}
-4 ni -75 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{1900}}{2}
1600 ni 300 ga qo'shish.
x=\frac{-40±10\sqrt{19}}{2}
1900 ning kvadrat ildizini chiqarish.
x=\frac{10\sqrt{19}-40}{2}
x=\frac{-40±10\sqrt{19}}{2} tenglamasini yeching, bunda ± musbat. -40 ni 10\sqrt{19} ga qo'shish.
x=5\sqrt{19}-20
-40+10\sqrt{19} ni 2 ga bo'lish.
x=\frac{-10\sqrt{19}-40}{2}
x=\frac{-40±10\sqrt{19}}{2} tenglamasini yeching, bunda ± manfiy. -40 dan 10\sqrt{19} ni ayirish.
x=-5\sqrt{19}-20
-40-10\sqrt{19} ni 2 ga bo'lish.
x=5\sqrt{19}-20 x=-5\sqrt{19}-20
Tenglama yechildi.
x^{2}+40x-75=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+40x-75-\left(-75\right)=-\left(-75\right)
75 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+40x=-\left(-75\right)
O‘zidan -75 ayirilsa 0 qoladi.
x^{2}+40x=75
0 dan -75 ni ayirish.
x^{2}+40x+20^{2}=75+20^{2}
40 ni bo‘lish, x shartining koeffitsienti, 2 ga 20 olish uchun. Keyin, 20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+40x+400=75+400
20 kvadratini chiqarish.
x^{2}+40x+400=475
75 ni 400 ga qo'shish.
\left(x+20\right)^{2}=475
x^{2}+40x+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+20\right)^{2}}=\sqrt{475}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+20=5\sqrt{19} x+20=-5\sqrt{19}
Qisqartirish.
x=5\sqrt{19}-20 x=-5\sqrt{19}-20
Tenglamaning ikkala tarafidan 20 ni ayirish.