x uchun yechish
x=-7
x=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=4 ab=-21
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}+4x-21 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,21 -3,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -21-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+21=20 -3+7=4
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=7
Yechim – 4 yigʻindisini beruvchi juftlik.
\left(x-3\right)\left(x+7\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=3 x=-7
Tenglamani yechish uchun x-3=0 va x+7=0 ni yeching.
a+b=4 ab=1\left(-21\right)=-21
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-21 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,21 -3,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -21-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+21=20 -3+7=4
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=7
Yechim – 4 yigʻindisini beruvchi juftlik.
\left(x^{2}-3x\right)+\left(7x-21\right)
x^{2}+4x-21 ni \left(x^{2}-3x\right)+\left(7x-21\right) sifatida qaytadan yozish.
x\left(x-3\right)+7\left(x-3\right)
Birinchi guruhda x ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(x-3\right)\left(x+7\right)
Distributiv funktsiyasidan foydalangan holda x-3 umumiy terminini chiqaring.
x=3 x=-7
Tenglamani yechish uchun x-3=0 va x+7=0 ni yeching.
x^{2}+4x-21=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 4 ni b va -21 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+84}}{2}
-4 ni -21 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{100}}{2}
16 ni 84 ga qo'shish.
x=\frac{-4±10}{2}
100 ning kvadrat ildizini chiqarish.
x=\frac{6}{2}
x=\frac{-4±10}{2} tenglamasini yeching, bunda ± musbat. -4 ni 10 ga qo'shish.
x=3
6 ni 2 ga bo'lish.
x=-\frac{14}{2}
x=\frac{-4±10}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 10 ni ayirish.
x=-7
-14 ni 2 ga bo'lish.
x=3 x=-7
Tenglama yechildi.
x^{2}+4x-21=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+4x-21-\left(-21\right)=-\left(-21\right)
21 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+4x=-\left(-21\right)
O‘zidan -21 ayirilsa 0 qoladi.
x^{2}+4x=21
0 dan -21 ni ayirish.
x^{2}+4x+2^{2}=21+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=21+4
2 kvadratini chiqarish.
x^{2}+4x+4=25
21 ni 4 ga qo'shish.
\left(x+2\right)^{2}=25
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=5 x+2=-5
Qisqartirish.
x=3 x=-7
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}