Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=4 ab=1\left(-21\right)=-21
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx-21 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,21 -3,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -21-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+21=20 -3+7=4
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=7
Yechim – 4 yigʻindisini beruvchi juftlik.
\left(x^{2}-3x\right)+\left(7x-21\right)
x^{2}+4x-21 ni \left(x^{2}-3x\right)+\left(7x-21\right) sifatida qaytadan yozish.
x\left(x-3\right)+7\left(x-3\right)
Birinchi guruhda x ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(x-3\right)\left(x+7\right)
Distributiv funktsiyasidan foydalangan holda x-3 umumiy terminini chiqaring.
x^{2}+4x-21=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+84}}{2}
-4 ni -21 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{100}}{2}
16 ni 84 ga qo'shish.
x=\frac{-4±10}{2}
100 ning kvadrat ildizini chiqarish.
x=\frac{6}{2}
x=\frac{-4±10}{2} tenglamasini yeching, bunda ± musbat. -4 ni 10 ga qo'shish.
x=3
6 ni 2 ga bo'lish.
x=-\frac{14}{2}
x=\frac{-4±10}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 10 ni ayirish.
x=-7
-14 ni 2 ga bo'lish.
x^{2}+4x-21=\left(x-3\right)\left(x-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 3 ga va x_{2} uchun -7 ga bo‘ling.
x^{2}+4x-21=\left(x-3\right)\left(x+7\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.