Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+4x-11+36x<-x^{2}
36x ni ikki tarafga qo’shing.
x^{2}+40x-11<-x^{2}
40x ni olish uchun 4x va 36x ni birlashtirish.
x^{2}+40x-11+x^{2}<0
x^{2} ni ikki tarafga qo’shing.
2x^{2}+40x-11<0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+40x-11=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-40±\sqrt{40^{2}-4\times 2\left(-11\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 2 ni, b uchun 40 ni va c uchun -11 ni ayiring.
x=\frac{-40±2\sqrt{422}}{4}
Hisoblarni amalga oshiring.
x=\frac{\sqrt{422}}{2}-10 x=-\frac{\sqrt{422}}{2}-10
x=\frac{-40±2\sqrt{422}}{4} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
2\left(x-\left(\frac{\sqrt{422}}{2}-10\right)\right)\left(x-\left(-\frac{\sqrt{422}}{2}-10\right)\right)<0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\left(\frac{\sqrt{422}}{2}-10\right)>0 x-\left(-\frac{\sqrt{422}}{2}-10\right)<0
Koʻpaytma manfiy boʻlishi uchun x-\left(\frac{\sqrt{422}}{2}-10\right) va x-\left(-\frac{\sqrt{422}}{2}-10\right) qarama-qarshi belgilar boʻlishi kerak. x-\left(\frac{\sqrt{422}}{2}-10\right) musbat, x-\left(-\frac{\sqrt{422}}{2}-10\right) manfiy boʻlganda, yechimni toping.
x\in \emptyset
Bu har qanday x uchun xato.
x-\left(-\frac{\sqrt{422}}{2}-10\right)>0 x-\left(\frac{\sqrt{422}}{2}-10\right)<0
x-\left(-\frac{\sqrt{422}}{2}-10\right) musbat, x-\left(\frac{\sqrt{422}}{2}-10\right) manfiy boʻlganda, yechimni toping.
x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right)
Ikkala tengsizlikning mos yechimi – x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right).
x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right)
Oxirgi yechim olingan yechimlarning birlashmasidir.