Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+4x=\frac{27}{4}
\frac{27}{4} hosil qilish uchun 9 va \frac{3}{4} ni ko'paytirish.
x^{2}+4x-\frac{27}{4}=0
Ikkala tarafdan \frac{27}{4} ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{27}{4}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 4 ni b va -\frac{27}{4} ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-\frac{27}{4}\right)}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+27}}{2}
-4 ni -\frac{27}{4} marotabaga ko'paytirish.
x=\frac{-4±\sqrt{43}}{2}
16 ni 27 ga qo'shish.
x=\frac{\sqrt{43}-4}{2}
x=\frac{-4±\sqrt{43}}{2} tenglamasini yeching, bunda ± musbat. -4 ni \sqrt{43} ga qo'shish.
x=\frac{\sqrt{43}}{2}-2
-4+\sqrt{43} ni 2 ga bo'lish.
x=\frac{-\sqrt{43}-4}{2}
x=\frac{-4±\sqrt{43}}{2} tenglamasini yeching, bunda ± manfiy. -4 dan \sqrt{43} ni ayirish.
x=-\frac{\sqrt{43}}{2}-2
-4-\sqrt{43} ni 2 ga bo'lish.
x=\frac{\sqrt{43}}{2}-2 x=-\frac{\sqrt{43}}{2}-2
Tenglama yechildi.
x^{2}+4x=\frac{27}{4}
\frac{27}{4} hosil qilish uchun 9 va \frac{3}{4} ni ko'paytirish.
x^{2}+4x+2^{2}=\frac{27}{4}+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=\frac{27}{4}+4
2 kvadratini chiqarish.
x^{2}+4x+4=\frac{43}{4}
\frac{27}{4} ni 4 ga qo'shish.
\left(x+2\right)^{2}=\frac{43}{4}
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{43}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\frac{\sqrt{43}}{2} x+2=-\frac{\sqrt{43}}{2}
Qisqartirish.
x=\frac{\sqrt{43}}{2}-2 x=-\frac{\sqrt{43}}{2}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.