Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+4x+9=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+4x+9-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+4x+9-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+4x-3=0
9 dan 12 ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 4 ni b va -3 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-3\right)}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{28}}{2}
16 ni 12 ga qo'shish.
x=\frac{-4±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-4}{2}
x=\frac{-4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-2
-4+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-4}{2}
x=\frac{-4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-2
-4-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Tenglama yechildi.
x^{2}+4x+9=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+4x+9-9=12-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x^{2}+4x=12-9
O‘zidan 9 ayirilsa 0 qoladi.
x^{2}+4x=3
12 dan 9 ni ayirish.
x^{2}+4x+2^{2}=3+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=3+4
2 kvadratini chiqarish.
x^{2}+4x+4=7
3 ni 4 ga qo'shish.
\left(x+2\right)^{2}=7
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{7} x+2=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}+4x+9=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+4x+9-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+4x+9-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+4x-3=0
9 dan 12 ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 4 ni b va -3 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-3\right)}}{2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{28}}{2}
16 ni 12 ga qo'shish.
x=\frac{-4±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-4}{2}
x=\frac{-4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-2
-4+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-4}{2}
x=\frac{-4±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-2
-4-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Tenglama yechildi.
x^{2}+4x+9=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+4x+9-9=12-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x^{2}+4x=12-9
O‘zidan 9 ayirilsa 0 qoladi.
x^{2}+4x=3
12 dan 9 ni ayirish.
x^{2}+4x+2^{2}=3+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=3+4
2 kvadratini chiqarish.
x^{2}+4x+4=7
3 ni 4 ga qo'shish.
\left(x+2\right)^{2}=7
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\sqrt{7} x+2=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.