Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+32x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-32±\sqrt{32^{2}-4}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-32±\sqrt{1024-4}}{2}
32 kvadratini chiqarish.
x=\frac{-32±\sqrt{1020}}{2}
1024 ni -4 ga qo'shish.
x=\frac{-32±2\sqrt{255}}{2}
1020 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{255}-32}{2}
x=\frac{-32±2\sqrt{255}}{2} tenglamasini yeching, bunda ± musbat. -32 ni 2\sqrt{255} ga qo'shish.
x=\sqrt{255}-16
-32+2\sqrt{255} ni 2 ga bo'lish.
x=\frac{-2\sqrt{255}-32}{2}
x=\frac{-32±2\sqrt{255}}{2} tenglamasini yeching, bunda ± manfiy. -32 dan 2\sqrt{255} ni ayirish.
x=-\sqrt{255}-16
-32-2\sqrt{255} ni 2 ga bo'lish.
x^{2}+32x+1=\left(x-\left(\sqrt{255}-16\right)\right)\left(x-\left(-\sqrt{255}-16\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -16+\sqrt{255} ga va x_{2} uchun -16-\sqrt{255} ga bo‘ling.