x uchun yechish (complex solution)
x=\sqrt{430}-15\approx 5,736441353
x=-\left(\sqrt{430}+15\right)\approx -35,736441353
x uchun yechish
x=\sqrt{430}-15\approx 5,736441353
x=-\sqrt{430}-15\approx -35,736441353
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+30x=205
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+30x-205=205-205
Tenglamaning ikkala tarafidan 205 ni ayirish.
x^{2}+30x-205=0
O‘zidan 205 ayirilsa 0 qoladi.
x=\frac{-30±\sqrt{30^{2}-4\left(-205\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 30 ni b va -205 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\left(-205\right)}}{2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+820}}{2}
-4 ni -205 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{1720}}{2}
900 ni 820 ga qo'shish.
x=\frac{-30±2\sqrt{430}}{2}
1720 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{430} ga qo'shish.
x=\sqrt{430}-15
-30+2\sqrt{430} ni 2 ga bo'lish.
x=\frac{-2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{430} ni ayirish.
x=-\sqrt{430}-15
-30-2\sqrt{430} ni 2 ga bo'lish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglama yechildi.
x^{2}+30x=205
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+30x+15^{2}=205+15^{2}
30 ni bo‘lish, x shartining koeffitsienti, 2 ga 15 olish uchun. Keyin, 15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+30x+225=205+225
15 kvadratini chiqarish.
x^{2}+30x+225=430
205 ni 225 ga qo'shish.
\left(x+15\right)^{2}=430
x^{2}+30x+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+15\right)^{2}}=\sqrt{430}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+15=\sqrt{430} x+15=-\sqrt{430}
Qisqartirish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
x^{2}+30x=205
205 olish uchun 225 dan 20 ni ayirish.
x^{2}+30x-205=0
Ikkala tarafdan 205 ni ayirish.
x=\frac{-30±\sqrt{30^{2}-4\left(-205\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 30 ni b va -205 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\left(-205\right)}}{2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+820}}{2}
-4 ni -205 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{1720}}{2}
900 ni 820 ga qo'shish.
x=\frac{-30±2\sqrt{430}}{2}
1720 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{430} ga qo'shish.
x=\sqrt{430}-15
-30+2\sqrt{430} ni 2 ga bo'lish.
x=\frac{-2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{430} ni ayirish.
x=-\sqrt{430}-15
-30-2\sqrt{430} ni 2 ga bo'lish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglama yechildi.
x^{2}+30x=205
205 olish uchun 225 dan 20 ni ayirish.
x^{2}+30x+15^{2}=205+15^{2}
30 ni bo‘lish, x shartining koeffitsienti, 2 ga 15 olish uchun. Keyin, 15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+30x+225=205+225
15 kvadratini chiqarish.
x^{2}+30x+225=430
205 ni 225 ga qo'shish.
\left(x+15\right)^{2}=430
x^{2}+30x+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+15\right)^{2}}=\sqrt{430}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+15=\sqrt{430} x+15=-\sqrt{430}
Qisqartirish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}