Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+30x=205
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+30x-205=205-205
Tenglamaning ikkala tarafidan 205 ni ayirish.
x^{2}+30x-205=0
O‘zidan 205 ayirilsa 0 qoladi.
x=\frac{-30±\sqrt{30^{2}-4\left(-205\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 30 ni b va -205 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\left(-205\right)}}{2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+820}}{2}
-4 ni -205 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{1720}}{2}
900 ni 820 ga qo'shish.
x=\frac{-30±2\sqrt{430}}{2}
1720 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{430} ga qo'shish.
x=\sqrt{430}-15
-30+2\sqrt{430} ni 2 ga bo'lish.
x=\frac{-2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{430} ni ayirish.
x=-\sqrt{430}-15
-30-2\sqrt{430} ni 2 ga bo'lish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglama yechildi.
x^{2}+30x=205
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+30x+15^{2}=205+15^{2}
30 ni bo‘lish, x shartining koeffitsienti, 2 ga 15 olish uchun. Keyin, 15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+30x+225=205+225
15 kvadratini chiqarish.
x^{2}+30x+225=430
205 ni 225 ga qo'shish.
\left(x+15\right)^{2}=430
x^{2}+30x+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+15\right)^{2}}=\sqrt{430}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+15=\sqrt{430} x+15=-\sqrt{430}
Qisqartirish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
x^{2}+30x=205
205 olish uchun 225 dan 20 ni ayirish.
x^{2}+30x-205=0
Ikkala tarafdan 205 ni ayirish.
x=\frac{-30±\sqrt{30^{2}-4\left(-205\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 30 ni b va -205 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\left(-205\right)}}{2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+820}}{2}
-4 ni -205 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{1720}}{2}
900 ni 820 ga qo'shish.
x=\frac{-30±2\sqrt{430}}{2}
1720 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{430} ga qo'shish.
x=\sqrt{430}-15
-30+2\sqrt{430} ni 2 ga bo'lish.
x=\frac{-2\sqrt{430}-30}{2}
x=\frac{-30±2\sqrt{430}}{2} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{430} ni ayirish.
x=-\sqrt{430}-15
-30-2\sqrt{430} ni 2 ga bo'lish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglama yechildi.
x^{2}+30x=205
205 olish uchun 225 dan 20 ni ayirish.
x^{2}+30x+15^{2}=205+15^{2}
30 ni bo‘lish, x shartining koeffitsienti, 2 ga 15 olish uchun. Keyin, 15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+30x+225=205+225
15 kvadratini chiqarish.
x^{2}+30x+225=430
205 ni 225 ga qo'shish.
\left(x+15\right)^{2}=430
x^{2}+30x+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+15\right)^{2}}=\sqrt{430}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+15=\sqrt{430} x+15=-\sqrt{430}
Qisqartirish.
x=\sqrt{430}-15 x=-\sqrt{430}-15
Tenglamaning ikkala tarafidan 15 ni ayirish.