x uchun yechish
x = \frac{\sqrt{77} - 3}{2} \approx 2,887482194
x=\frac{-\sqrt{77}-3}{2}\approx -5,887482194
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+3x-5=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+3x-5-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+3x-5-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+3x-17=0
-5 dan 12 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-17\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va -17 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-17\right)}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+68}}{2}
-4 ni -17 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{77}}{2}
9 ni 68 ga qo'shish.
x=\frac{\sqrt{77}-3}{2}
x=\frac{-3±\sqrt{77}}{2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{77} ga qo'shish.
x=\frac{-\sqrt{77}-3}{2}
x=\frac{-3±\sqrt{77}}{2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{77} ni ayirish.
x=\frac{\sqrt{77}-3}{2} x=\frac{-\sqrt{77}-3}{2}
Tenglama yechildi.
x^{2}+3x-5=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3x-5-\left(-5\right)=12-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+3x=12-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+3x=17
12 dan -5 ni ayirish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=17+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=17+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{77}{4}
17 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{77}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{77}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{77}}{2} x+\frac{3}{2}=-\frac{\sqrt{77}}{2}
Qisqartirish.
x=\frac{\sqrt{77}-3}{2} x=\frac{-\sqrt{77}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}