Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}+3x-5x+6x^{2}-2x-3
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}-2x+6x^{2}-2x-3
-2x ni olish uchun 3x va -5x ni birlashtirish.
3x^{2}-2x-2x-3
3x^{2} ni olish uchun -3x^{2} va 6x^{2} ni birlashtirish.
3x^{2}-4x-3
-4x ni olish uchun -2x va -2x ni birlashtirish.
factor(-3x^{2}+3x-5x+6x^{2}-2x-3)
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
factor(-3x^{2}-2x+6x^{2}-2x-3)
-2x ni olish uchun 3x va -5x ni birlashtirish.
factor(3x^{2}-2x-2x-3)
3x^{2} ni olish uchun -3x^{2} va 6x^{2} ni birlashtirish.
factor(3x^{2}-4x-3)
-4x ni olish uchun -2x va -2x ni birlashtirish.
3x^{2}-4x-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
-12 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
16 ni 36 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
52 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{13}}{2\times 3}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{13}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{13}+4}{6}
x=\frac{4±2\sqrt{13}}{6} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{13} ga qo'shish.
x=\frac{\sqrt{13}+2}{3}
4+2\sqrt{13} ni 6 ga bo'lish.
x=\frac{4-2\sqrt{13}}{6}
x=\frac{4±2\sqrt{13}}{6} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{13} ni ayirish.
x=\frac{2-\sqrt{13}}{3}
4-2\sqrt{13} ni 6 ga bo'lish.
3x^{2}-4x-3=3\left(x-\frac{\sqrt{13}+2}{3}\right)\left(x-\frac{2-\sqrt{13}}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{2+\sqrt{13}}{3} ga va x_{2} uchun \frac{2-\sqrt{13}}{3} ga bo‘ling.