Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}+3x+7x+12
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}+10x+12
10x ni olish uchun 3x va 7x ni birlashtirish.
factor(-3x^{2}+3x+7x+12)
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
factor(-3x^{2}+10x+12)
10x ni olish uchun 3x va 7x ni birlashtirish.
-3x^{2}+10x+12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{100-4\left(-3\right)\times 12}}{2\left(-3\right)}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+12\times 12}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+144}}{2\left(-3\right)}
12 ni 12 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{244}}{2\left(-3\right)}
100 ni 144 ga qo'shish.
x=\frac{-10±2\sqrt{61}}{2\left(-3\right)}
244 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{61}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{61}-10}{-6}
x=\frac{-10±2\sqrt{61}}{-6} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{61} ga qo'shish.
x=\frac{5-\sqrt{61}}{3}
-10+2\sqrt{61} ni -6 ga bo'lish.
x=\frac{-2\sqrt{61}-10}{-6}
x=\frac{-10±2\sqrt{61}}{-6} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{61} ni ayirish.
x=\frac{\sqrt{61}+5}{3}
-10-2\sqrt{61} ni -6 ga bo'lish.
-3x^{2}+10x+12=-3\left(x-\frac{5-\sqrt{61}}{3}\right)\left(x-\frac{\sqrt{61}+5}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5-\sqrt{61}}{3} ga va x_{2} uchun \frac{5+\sqrt{61}}{3} ga bo‘ling.