Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+3x-\frac{7}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{7}{4}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va -\frac{7}{4} ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-\frac{7}{4}\right)}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+7}}{2}
-4 ni -\frac{7}{4} marotabaga ko'paytirish.
x=\frac{-3±\sqrt{16}}{2}
9 ni 7 ga qo'shish.
x=\frac{-3±4}{2}
16 ning kvadrat ildizini chiqarish.
x=\frac{1}{2}
x=\frac{-3±4}{2} tenglamasini yeching, bunda ± musbat. -3 ni 4 ga qo'shish.
x=-\frac{7}{2}
x=\frac{-3±4}{2} tenglamasini yeching, bunda ± manfiy. -3 dan 4 ni ayirish.
x=\frac{1}{2} x=-\frac{7}{2}
Tenglama yechildi.
x^{2}+3x-\frac{7}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3x-\frac{7}{4}-\left(-\frac{7}{4}\right)=-\left(-\frac{7}{4}\right)
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+3x=-\left(-\frac{7}{4}\right)
O‘zidan -\frac{7}{4} ayirilsa 0 qoladi.
x^{2}+3x=\frac{7}{4}
0 dan -\frac{7}{4} ni ayirish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{7+9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=4
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{4} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{2}\right)^{2}=4
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=2 x+\frac{3}{2}=-2
Qisqartirish.
x=\frac{1}{2} x=-\frac{7}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.