Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+3x=-10
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+3x-\left(-10\right)=-10-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+3x-\left(-10\right)=0
O‘zidan -10 ayirilsa 0 qoladi.
x^{2}+3x+10=0
0 dan -10 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va 10 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 10}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{-31}}{2}
9 ni -40 ga qo'shish.
x=\frac{-3±\sqrt{31}i}{2}
-31 ning kvadrat ildizini chiqarish.
x=\frac{-3+\sqrt{31}i}{2}
x=\frac{-3±\sqrt{31}i}{2} tenglamasini yeching, bunda ± musbat. -3 ni i\sqrt{31} ga qo'shish.
x=\frac{-\sqrt{31}i-3}{2}
x=\frac{-3±\sqrt{31}i}{2} tenglamasini yeching, bunda ± manfiy. -3 dan i\sqrt{31} ni ayirish.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
Tenglama yechildi.
x^{2}+3x=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-10+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=-10+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=-\frac{31}{4}
-10 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=-\frac{31}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{31}i}{2} x+\frac{3}{2}=-\frac{\sqrt{31}i}{2}
Qisqartirish.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.