Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+3x+\frac{5}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va \frac{5}{4} ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-5}}{2}
-4 ni \frac{5}{4} marotabaga ko'paytirish.
x=\frac{-3±\sqrt{4}}{2}
9 ni -5 ga qo'shish.
x=\frac{-3±2}{2}
4 ning kvadrat ildizini chiqarish.
x=-\frac{1}{2}
x=\frac{-3±2}{2} tenglamasini yeching, bunda ± musbat. -3 ni 2 ga qo'shish.
x=-\frac{5}{2}
x=\frac{-3±2}{2} tenglamasini yeching, bunda ± manfiy. -3 dan 2 ni ayirish.
x=-\frac{1}{2} x=-\frac{5}{2}
Tenglama yechildi.
x^{2}+3x+\frac{5}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3x+\frac{5}{4}-\frac{5}{4}=-\frac{5}{4}
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.
x^{2}+3x=-\frac{5}{4}
O‘zidan \frac{5}{4} ayirilsa 0 qoladi.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{-5+9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=1
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{4} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{2}\right)^{2}=1
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=1 x+\frac{3}{2}=-1
Qisqartirish.
x=-\frac{1}{2} x=-\frac{5}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.