Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+25x+7226=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-25±\sqrt{25^{2}-4\times 7226}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 25 ni b va 7226 ni c bilan almashtiring.
x=\frac{-25±\sqrt{625-4\times 7226}}{2}
25 kvadratini chiqarish.
x=\frac{-25±\sqrt{625-28904}}{2}
-4 ni 7226 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{-28279}}{2}
625 ni -28904 ga qo'shish.
x=\frac{-25±\sqrt{28279}i}{2}
-28279 ning kvadrat ildizini chiqarish.
x=\frac{-25+\sqrt{28279}i}{2}
x=\frac{-25±\sqrt{28279}i}{2} tenglamasini yeching, bunda ± musbat. -25 ni i\sqrt{28279} ga qo'shish.
x=\frac{-\sqrt{28279}i-25}{2}
x=\frac{-25±\sqrt{28279}i}{2} tenglamasini yeching, bunda ± manfiy. -25 dan i\sqrt{28279} ni ayirish.
x=\frac{-25+\sqrt{28279}i}{2} x=\frac{-\sqrt{28279}i-25}{2}
Tenglama yechildi.
x^{2}+25x+7226=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+25x+7226-7226=-7226
Tenglamaning ikkala tarafidan 7226 ni ayirish.
x^{2}+25x=-7226
O‘zidan 7226 ayirilsa 0 qoladi.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-7226+\left(\frac{25}{2}\right)^{2}
25 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{25}{2} olish uchun. Keyin, \frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+25x+\frac{625}{4}=-7226+\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{25}{2} kvadratini chiqarish.
x^{2}+25x+\frac{625}{4}=-\frac{28279}{4}
-7226 ni \frac{625}{4} ga qo'shish.
\left(x+\frac{25}{2}\right)^{2}=-\frac{28279}{4}
x^{2}+25x+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{-\frac{28279}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{25}{2}=\frac{\sqrt{28279}i}{2} x+\frac{25}{2}=-\frac{\sqrt{28279}i}{2}
Qisqartirish.
x=\frac{-25+\sqrt{28279}i}{2} x=\frac{-\sqrt{28279}i-25}{2}
Tenglamaning ikkala tarafidan \frac{25}{2} ni ayirish.