Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+20x-15=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-20±\sqrt{20^{2}-4\left(-15\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{400-4\left(-15\right)}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+60}}{2}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{460}}{2}
400 ni 60 ga qo'shish.
x=\frac{-20±2\sqrt{115}}{2}
460 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{115}-20}{2}
x=\frac{-20±2\sqrt{115}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{115} ga qo'shish.
x=\sqrt{115}-10
-20+2\sqrt{115} ni 2 ga bo'lish.
x=\frac{-2\sqrt{115}-20}{2}
x=\frac{-20±2\sqrt{115}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{115} ni ayirish.
x=-\sqrt{115}-10
-20-2\sqrt{115} ni 2 ga bo'lish.
x^{2}+20x-15=\left(x-\left(\sqrt{115}-10\right)\right)\left(x-\left(-\sqrt{115}-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -10+\sqrt{115} ga va x_{2} uchun -10-\sqrt{115} ga bo‘ling.