Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+20x=45
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+20x-45=45-45
Tenglamaning ikkala tarafidan 45 ni ayirish.
x^{2}+20x-45=0
O‘zidan 45 ayirilsa 0 qoladi.
x=\frac{-20±\sqrt{20^{2}-4\left(-45\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va -45 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-45\right)}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+180}}{2}
-4 ni -45 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{580}}{2}
400 ni 180 ga qo'shish.
x=\frac{-20±2\sqrt{145}}{2}
580 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{145}-20}{2}
x=\frac{-20±2\sqrt{145}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{145} ga qo'shish.
x=\sqrt{145}-10
-20+2\sqrt{145} ni 2 ga bo'lish.
x=\frac{-2\sqrt{145}-20}{2}
x=\frac{-20±2\sqrt{145}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{145} ni ayirish.
x=-\sqrt{145}-10
-20-2\sqrt{145} ni 2 ga bo'lish.
x=\sqrt{145}-10 x=-\sqrt{145}-10
Tenglama yechildi.
x^{2}+20x=45
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+20x+10^{2}=45+10^{2}
20 ni bo‘lish, x shartining koeffitsienti, 2 ga 10 olish uchun. Keyin, 10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+20x+100=45+100
10 kvadratini chiqarish.
x^{2}+20x+100=145
45 ni 100 ga qo'shish.
\left(x+10\right)^{2}=145
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{145}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=\sqrt{145} x+10=-\sqrt{145}
Qisqartirish.
x=\sqrt{145}-10 x=-\sqrt{145}-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
x^{2}+20x=45
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+20x-45=45-45
Tenglamaning ikkala tarafidan 45 ni ayirish.
x^{2}+20x-45=0
O‘zidan 45 ayirilsa 0 qoladi.
x=\frac{-20±\sqrt{20^{2}-4\left(-45\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va -45 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-45\right)}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+180}}{2}
-4 ni -45 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{580}}{2}
400 ni 180 ga qo'shish.
x=\frac{-20±2\sqrt{145}}{2}
580 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{145}-20}{2}
x=\frac{-20±2\sqrt{145}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{145} ga qo'shish.
x=\sqrt{145}-10
-20+2\sqrt{145} ni 2 ga bo'lish.
x=\frac{-2\sqrt{145}-20}{2}
x=\frac{-20±2\sqrt{145}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{145} ni ayirish.
x=-\sqrt{145}-10
-20-2\sqrt{145} ni 2 ga bo'lish.
x=\sqrt{145}-10 x=-\sqrt{145}-10
Tenglama yechildi.
x^{2}+20x=45
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+20x+10^{2}=45+10^{2}
20 ni bo‘lish, x shartining koeffitsienti, 2 ga 10 olish uchun. Keyin, 10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+20x+100=45+100
10 kvadratini chiqarish.
x^{2}+20x+100=145
45 ni 100 ga qo'shish.
\left(x+10\right)^{2}=145
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{145}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=\sqrt{145} x+10=-\sqrt{145}
Qisqartirish.
x=\sqrt{145}-10 x=-\sqrt{145}-10
Tenglamaning ikkala tarafidan 10 ni ayirish.