x uchun yechish
x=6
x=-6
Grafik
Viktorina
Polynomial
x ^ { 2 } + 20 - 36 = 20
Baham ko'rish
Klipbordga nusxa olish
x^{2}-16=20
-16 olish uchun 20 dan 36 ni ayirish.
x^{2}-16-20=0
Ikkala tarafdan 20 ni ayirish.
x^{2}-36=0
-36 olish uchun -16 dan 20 ni ayirish.
\left(x-6\right)\left(x+6\right)=0
Hisoblang: x^{2}-36. x^{2}-36 ni x^{2}-6^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
Tenglamani yechish uchun x-6=0 va x+6=0 ni yeching.
x^{2}-16=20
-16 olish uchun 20 dan 36 ni ayirish.
x^{2}=20+16
16 ni ikki tarafga qo’shing.
x^{2}=36
36 olish uchun 20 va 16'ni qo'shing.
x=6 x=-6
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}-16=20
-16 olish uchun 20 dan 36 ni ayirish.
x^{2}-16-20=0
Ikkala tarafdan 20 ni ayirish.
x^{2}-36=0
-36 olish uchun -16 dan 20 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -36 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{144}}{2}
-4 ni -36 marotabaga ko'paytirish.
x=\frac{0±12}{2}
144 ning kvadrat ildizini chiqarish.
x=6
x=\frac{0±12}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2 ga bo'lish.
x=-6
x=\frac{0±12}{2} tenglamasini yeching, bunda ± manfiy. -12 ni 2 ga bo'lish.
x=6 x=-6
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}