Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(x+2-1\right)=0
x omili.
x=0 x=-1
Tenglamani yechish uchun x=0 va x+1=0 ni yeching.
x^{2}+x=0
x ni olish uchun 2x va -x ni birlashtirish.
x=\frac{-1±\sqrt{1^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va 0 ni c bilan almashtiring.
x=\frac{-1±1}{2}
1^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-1±1}{2} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
x=0
0 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{-1±1}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=0 x=-1
Tenglama yechildi.
x^{2}+x=0
x ni olish uchun 2x va -x ni birlashtirish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=0 x=-1
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.