Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=2 ab=1\left(-3\right)=-3
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx-3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-1 b=3
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(x^{2}-x\right)+\left(3x-3\right)
x^{2}+2x-3 ni \left(x^{2}-x\right)+\left(3x-3\right) sifatida qaytadan yozish.
x\left(x-1\right)+3\left(x-1\right)
Birinchi guruhda x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(x-1\right)\left(x+3\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x^{2}+2x-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{16}}{2}
4 ni 12 ga qo'shish.
x=\frac{-2±4}{2}
16 ning kvadrat ildizini chiqarish.
x=\frac{2}{2}
x=\frac{-2±4}{2} tenglamasini yeching, bunda ± musbat. -2 ni 4 ga qo'shish.
x=1
2 ni 2 ga bo'lish.
x=-\frac{6}{2}
x=\frac{-2±4}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 4 ni ayirish.
x=-3
-6 ni 2 ga bo'lish.
x^{2}+2x-3=\left(x-1\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1 ga va x_{2} uchun -3 ga bo‘ling.
x^{2}+2x-3=\left(x-1\right)\left(x+3\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.