Omil
\left(x-\left(-\sqrt{22}-1\right)\right)\left(x-\left(\sqrt{22}-1\right)\right)
Baholash
x^{2}+2x-21
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+2x-21=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\left(-21\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\left(-21\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+84}}{2}
-4 ni -21 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{88}}{2}
4 ni 84 ga qo'shish.
x=\frac{-2±2\sqrt{22}}{2}
88 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{22}-2}{2}
x=\frac{-2±2\sqrt{22}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{22} ga qo'shish.
x=\sqrt{22}-1
-2+2\sqrt{22} ni 2 ga bo'lish.
x=\frac{-2\sqrt{22}-2}{2}
x=\frac{-2±2\sqrt{22}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{22} ni ayirish.
x=-\sqrt{22}-1
-2-2\sqrt{22} ni 2 ga bo'lish.
x^{2}+2x-21=\left(x-\left(\sqrt{22}-1\right)\right)\left(x-\left(-\sqrt{22}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\sqrt{22} ga va x_{2} uchun -1-\sqrt{22} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}