Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+5x+6=0
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 5 ni b va 6 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
-12 ni 6 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-47}}{2\times 3}
25 ni -72 ga qo'shish.
x=\frac{-5±\sqrt{47}i}{2\times 3}
-47 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{47}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{47}i}{6}
x=\frac{-5±\sqrt{47}i}{6} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{47} ga qo'shish.
x=\frac{-\sqrt{47}i-5}{6}
x=\frac{-5±\sqrt{47}i}{6} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{47} ni ayirish.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Tenglama yechildi.
3x^{2}+5x+6=0
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}+5x=-6
Ikkala tarafdan 6 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{3}x=-2
-6 ni 3 ga bo'lish.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{6} olish uchun. Keyin, \frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{6} kvadratini chiqarish.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
-2 ni \frac{25}{36} ga qo'shish.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
Qisqartirish.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Tenglamaning ikkala tarafidan \frac{5}{6} ni ayirish.