Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+2x+3=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+3-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+2x+3-7=0
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}+2x-4=0
3 dan 7 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -4 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{20}}{2}
4 ni 16 ga qo'shish.
x=\frac{-2±2\sqrt{5}}{2}
20 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{5}-2}{2}
x=\frac{-2±2\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{5} ga qo'shish.
x=\sqrt{5}-1
-2+2\sqrt{5} ni 2 ga bo'lish.
x=\frac{-2\sqrt{5}-2}{2}
x=\frac{-2±2\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{5} ni ayirish.
x=-\sqrt{5}-1
-2-2\sqrt{5} ni 2 ga bo'lish.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tenglama yechildi.
x^{2}+2x+3=7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+3-3=7-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+2x=7-3
O‘zidan 3 ayirilsa 0 qoladi.
x^{2}+2x=4
7 dan 3 ni ayirish.
x^{2}+2x+1^{2}=4+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=4+1
1 kvadratini chiqarish.
x^{2}+2x+1=5
4 ni 1 ga qo'shish.
\left(x+1\right)^{2}=5
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{5} x+1=-\sqrt{5}
Qisqartirish.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
x^{2}+2x+3=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+3-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+2x+3-7=0
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}+2x-4=0
3 dan 7 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -4 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{20}}{2}
4 ni 16 ga qo'shish.
x=\frac{-2±2\sqrt{5}}{2}
20 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{5}-2}{2}
x=\frac{-2±2\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{5} ga qo'shish.
x=\sqrt{5}-1
-2+2\sqrt{5} ni 2 ga bo'lish.
x=\frac{-2\sqrt{5}-2}{2}
x=\frac{-2±2\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{5} ni ayirish.
x=-\sqrt{5}-1
-2-2\sqrt{5} ni 2 ga bo'lish.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tenglama yechildi.
x^{2}+2x+3=7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+3-3=7-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+2x=7-3
O‘zidan 3 ayirilsa 0 qoladi.
x^{2}+2x=4
7 dan 3 ni ayirish.
x^{2}+2x+1^{2}=4+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=4+1
1 kvadratini chiqarish.
x^{2}+2x+1=5
4 ni 1 ga qo'shish.
\left(x+1\right)^{2}=5
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{5} x+1=-\sqrt{5}
Qisqartirish.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.