x uchun yechish (complex solution)
x=\sqrt{101}-1\approx 9,049875621
x=-\left(\sqrt{101}+1\right)\approx -11,049875621
x uchun yechish
x=\sqrt{101}-1\approx 9,049875621
x=-\sqrt{101}-1\approx -11,049875621
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+2x+11=111
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+11-111=111-111
Tenglamaning ikkala tarafidan 111 ni ayirish.
x^{2}+2x+11-111=0
O‘zidan 111 ayirilsa 0 qoladi.
x^{2}+2x-100=0
11 dan 111 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-100\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -100 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-100\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+400}}{2}
-4 ni -100 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{404}}{2}
4 ni 400 ga qo'shish.
x=\frac{-2±2\sqrt{101}}{2}
404 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{101}-2}{2}
x=\frac{-2±2\sqrt{101}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{101} ga qo'shish.
x=\sqrt{101}-1
-2+2\sqrt{101} ni 2 ga bo'lish.
x=\frac{-2\sqrt{101}-2}{2}
x=\frac{-2±2\sqrt{101}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{101} ni ayirish.
x=-\sqrt{101}-1
-2-2\sqrt{101} ni 2 ga bo'lish.
x=\sqrt{101}-1 x=-\sqrt{101}-1
Tenglama yechildi.
x^{2}+2x+11=111
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+11-11=111-11
Tenglamaning ikkala tarafidan 11 ni ayirish.
x^{2}+2x=111-11
O‘zidan 11 ayirilsa 0 qoladi.
x^{2}+2x=100
111 dan 11 ni ayirish.
x^{2}+2x+1^{2}=100+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=100+1
1 kvadratini chiqarish.
x^{2}+2x+1=101
100 ni 1 ga qo'shish.
\left(x+1\right)^{2}=101
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{101}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{101} x+1=-\sqrt{101}
Qisqartirish.
x=\sqrt{101}-1 x=-\sqrt{101}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
x^{2}+2x+11=111
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+11-111=111-111
Tenglamaning ikkala tarafidan 111 ni ayirish.
x^{2}+2x+11-111=0
O‘zidan 111 ayirilsa 0 qoladi.
x^{2}+2x-100=0
11 dan 111 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-100\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -100 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-100\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+400}}{2}
-4 ni -100 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{404}}{2}
4 ni 400 ga qo'shish.
x=\frac{-2±2\sqrt{101}}{2}
404 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{101}-2}{2}
x=\frac{-2±2\sqrt{101}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{101} ga qo'shish.
x=\sqrt{101}-1
-2+2\sqrt{101} ni 2 ga bo'lish.
x=\frac{-2\sqrt{101}-2}{2}
x=\frac{-2±2\sqrt{101}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{101} ni ayirish.
x=-\sqrt{101}-1
-2-2\sqrt{101} ni 2 ga bo'lish.
x=\sqrt{101}-1 x=-\sqrt{101}-1
Tenglama yechildi.
x^{2}+2x+11=111
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+11-11=111-11
Tenglamaning ikkala tarafidan 11 ni ayirish.
x^{2}+2x=111-11
O‘zidan 11 ayirilsa 0 qoladi.
x^{2}+2x=100
111 dan 11 ni ayirish.
x^{2}+2x+1^{2}=100+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=100+1
1 kvadratini chiqarish.
x^{2}+2x+1=101
100 ni 1 ga qo'shish.
\left(x+1\right)^{2}=101
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{101}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{101} x+1=-\sqrt{101}
Qisqartirish.
x=\sqrt{101}-1 x=-\sqrt{101}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}