Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+18x+67=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-18±\sqrt{18^{2}-4\times 67}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 18 ni b va 67 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\times 67}}{2}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-268}}{2}
-4 ni 67 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{56}}{2}
324 ni -268 ga qo'shish.
x=\frac{-18±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-18}{2}
x=\frac{-18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -18 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-9
-18+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-18}{2}
x=\frac{-18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -18 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-9
-18-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-9 x=-\sqrt{14}-9
Tenglama yechildi.
x^{2}+18x+67=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+18x+67-67=-67
Tenglamaning ikkala tarafidan 67 ni ayirish.
x^{2}+18x=-67
O‘zidan 67 ayirilsa 0 qoladi.
x^{2}+18x+9^{2}=-67+9^{2}
18 ni bo‘lish, x shartining koeffitsienti, 2 ga 9 olish uchun. Keyin, 9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+18x+81=-67+81
9 kvadratini chiqarish.
x^{2}+18x+81=14
-67 ni 81 ga qo'shish.
\left(x+9\right)^{2}=14
x^{2}+18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+9\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+9=\sqrt{14} x+9=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-9 x=-\sqrt{14}-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x^{2}+18x+67=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-18±\sqrt{18^{2}-4\times 67}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 18 ni b va 67 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\times 67}}{2}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-268}}{2}
-4 ni 67 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{56}}{2}
324 ni -268 ga qo'shish.
x=\frac{-18±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-18}{2}
x=\frac{-18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -18 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-9
-18+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-18}{2}
x=\frac{-18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -18 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-9
-18-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-9 x=-\sqrt{14}-9
Tenglama yechildi.
x^{2}+18x+67=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+18x+67-67=-67
Tenglamaning ikkala tarafidan 67 ni ayirish.
x^{2}+18x=-67
O‘zidan 67 ayirilsa 0 qoladi.
x^{2}+18x+9^{2}=-67+9^{2}
18 ni bo‘lish, x shartining koeffitsienti, 2 ga 9 olish uchun. Keyin, 9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+18x+81=-67+81
9 kvadratini chiqarish.
x^{2}+18x+81=14
-67 ni 81 ga qo'shish.
\left(x+9\right)^{2}=14
x^{2}+18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+9\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+9=\sqrt{14} x+9=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-9 x=-\sqrt{14}-9
Tenglamaning ikkala tarafidan 9 ni ayirish.