Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+140x=261
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+140x-261=261-261
Tenglamaning ikkala tarafidan 261 ni ayirish.
x^{2}+140x-261=0
O‘zidan 261 ayirilsa 0 qoladi.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 140 ni b va -261 ni c bilan almashtiring.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
140 kvadratini chiqarish.
x=\frac{-140±\sqrt{19600+1044}}{2}
-4 ni -261 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{20644}}{2}
19600 ni 1044 ga qo'shish.
x=\frac{-140±2\sqrt{5161}}{2}
20644 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{5161}-140}{2}
x=\frac{-140±2\sqrt{5161}}{2} tenglamasini yeching, bunda ± musbat. -140 ni 2\sqrt{5161} ga qo'shish.
x=\sqrt{5161}-70
-140+2\sqrt{5161} ni 2 ga bo'lish.
x=\frac{-2\sqrt{5161}-140}{2}
x=\frac{-140±2\sqrt{5161}}{2} tenglamasini yeching, bunda ± manfiy. -140 dan 2\sqrt{5161} ni ayirish.
x=-\sqrt{5161}-70
-140-2\sqrt{5161} ni 2 ga bo'lish.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Tenglama yechildi.
x^{2}+140x=261
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+140x+70^{2}=261+70^{2}
140 ni bo‘lish, x shartining koeffitsienti, 2 ga 70 olish uchun. Keyin, 70 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+140x+4900=261+4900
70 kvadratini chiqarish.
x^{2}+140x+4900=5161
261 ni 4900 ga qo'shish.
\left(x+70\right)^{2}=5161
x^{2}+140x+4900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
Qisqartirish.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Tenglamaning ikkala tarafidan 70 ni ayirish.
x^{2}+140x=261
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+140x-261=261-261
Tenglamaning ikkala tarafidan 261 ni ayirish.
x^{2}+140x-261=0
O‘zidan 261 ayirilsa 0 qoladi.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 140 ni b va -261 ni c bilan almashtiring.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
140 kvadratini chiqarish.
x=\frac{-140±\sqrt{19600+1044}}{2}
-4 ni -261 marotabaga ko'paytirish.
x=\frac{-140±\sqrt{20644}}{2}
19600 ni 1044 ga qo'shish.
x=\frac{-140±2\sqrt{5161}}{2}
20644 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{5161}-140}{2}
x=\frac{-140±2\sqrt{5161}}{2} tenglamasini yeching, bunda ± musbat. -140 ni 2\sqrt{5161} ga qo'shish.
x=\sqrt{5161}-70
-140+2\sqrt{5161} ni 2 ga bo'lish.
x=\frac{-2\sqrt{5161}-140}{2}
x=\frac{-140±2\sqrt{5161}}{2} tenglamasini yeching, bunda ± manfiy. -140 dan 2\sqrt{5161} ni ayirish.
x=-\sqrt{5161}-70
-140-2\sqrt{5161} ni 2 ga bo'lish.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Tenglama yechildi.
x^{2}+140x=261
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+140x+70^{2}=261+70^{2}
140 ni bo‘lish, x shartining koeffitsienti, 2 ga 70 olish uchun. Keyin, 70 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+140x+4900=261+4900
70 kvadratini chiqarish.
x^{2}+140x+4900=5161
261 ni 4900 ga qo'shish.
\left(x+70\right)^{2}=5161
x^{2}+140x+4900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
Qisqartirish.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Tenglamaning ikkala tarafidan 70 ni ayirish.