Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+14x-28=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-14±\sqrt{14^{2}-4\times 1\left(-28\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 14 ni va c uchun -28 ni ayiring.
x=\frac{-14±2\sqrt{77}}{2}
Hisoblarni amalga oshiring.
x=\sqrt{77}-7 x=-\sqrt{77}-7
x=\frac{-14±2\sqrt{77}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
\left(x-\left(\sqrt{77}-7\right)\right)\left(x-\left(-\sqrt{77}-7\right)\right)\leq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\left(\sqrt{77}-7\right)\geq 0 x-\left(-\sqrt{77}-7\right)\leq 0
Koʻpaytma ≤0 boʻlishi uchun qiymatlardan biri x-\left(\sqrt{77}-7\right) va x-\left(-\sqrt{77}-7\right) ≥0 va boshqasi ≤0 boʻlishi kerak. x-\left(\sqrt{77}-7\right)\geq 0 va x-\left(-\sqrt{77}-7\right)\leq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \emptyset
Bu har qanday x uchun xato.
x-\left(-\sqrt{77}-7\right)\geq 0 x-\left(\sqrt{77}-7\right)\leq 0
x-\left(\sqrt{77}-7\right)\leq 0 va x-\left(-\sqrt{77}-7\right)\geq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \begin{bmatrix}-\left(\sqrt{77}+7\right),\sqrt{77}-7\end{bmatrix}
Ikkala tengsizlikning mos yechimi – x\in \left[-\left(\sqrt{77}+7\right),\sqrt{77}-7\right].
x\in \begin{bmatrix}-\sqrt{77}-7,\sqrt{77}-7\end{bmatrix}
Oxirgi yechim olingan yechimlarning birlashmasidir.