Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+14x+22=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-14±\sqrt{14^{2}-4\times 22}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{196-4\times 22}}{2}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196-88}}{2}
-4 ni 22 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{108}}{2}
196 ni -88 ga qo'shish.
x=\frac{-14±6\sqrt{3}}{2}
108 ning kvadrat ildizini chiqarish.
x=\frac{6\sqrt{3}-14}{2}
x=\frac{-14±6\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -14 ni 6\sqrt{3} ga qo'shish.
x=3\sqrt{3}-7
-14+6\sqrt{3} ni 2 ga bo'lish.
x=\frac{-6\sqrt{3}-14}{2}
x=\frac{-14±6\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -14 dan 6\sqrt{3} ni ayirish.
x=-3\sqrt{3}-7
-14-6\sqrt{3} ni 2 ga bo'lish.
x^{2}+14x+22=\left(x-\left(3\sqrt{3}-7\right)\right)\left(x-\left(-3\sqrt{3}-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -7+3\sqrt{3} ga va x_{2} uchun -7-3\sqrt{3} ga bo‘ling.