Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(x+13\right)
x omili.
x^{2}+13x=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-13±\sqrt{13^{2}}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-13±13}{2}
13^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-13±13}{2} tenglamasini yeching, bunda ± musbat. -13 ni 13 ga qo'shish.
x=0
0 ni 2 ga bo'lish.
x=-\frac{26}{2}
x=\frac{-13±13}{2} tenglamasini yeching, bunda ± manfiy. -13 dan 13 ni ayirish.
x=-13
-26 ni 2 ga bo'lish.
x^{2}+13x=x\left(x-\left(-13\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -13 ga bo‘ling.
x^{2}+13x=x\left(x+13\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.