x uchun yechish
x = \frac{2875}{2} = 1437\frac{1}{2} = 1437,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+14400=\left(5+x\right)^{2}
2 daraja ko‘rsatkichini 120 ga hisoblang va 14400 ni qiymatni oling.
x^{2}+14400=25+10x+x^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5+x\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+14400-10x=25+x^{2}
Ikkala tarafdan 10x ni ayirish.
x^{2}+14400-10x-x^{2}=25
Ikkala tarafdan x^{2} ni ayirish.
14400-10x=25
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-10x=25-14400
Ikkala tarafdan 14400 ni ayirish.
-10x=-14375
-14375 olish uchun 25 dan 14400 ni ayirish.
x=\frac{-14375}{-10}
Ikki tarafini -10 ga bo‘ling.
x=\frac{2875}{2}
\frac{-14375}{-10} ulushini -5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}