Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+12x-32=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\left(-32\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\left(-32\right)}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144+128}}{2}
-4 ni -32 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{272}}{2}
144 ni 128 ga qo'shish.
x=\frac{-12±4\sqrt{17}}{2}
272 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{17}-12}{2}
x=\frac{-12±4\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 4\sqrt{17} ga qo'shish.
x=2\sqrt{17}-6
-12+4\sqrt{17} ni 2 ga bo'lish.
x=\frac{-4\sqrt{17}-12}{2}
x=\frac{-12±4\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 4\sqrt{17} ni ayirish.
x=-2\sqrt{17}-6
-12-4\sqrt{17} ni 2 ga bo'lish.
x^{2}+12x-32=\left(x-\left(2\sqrt{17}-6\right)\right)\left(x-\left(-2\sqrt{17}-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -6+2\sqrt{17} ga va x_{2} uchun -6-2\sqrt{17} ga bo‘ling.