Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+12x-11=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\left(-11\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\left(-11\right)}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144+44}}{2}
-4 ni -11 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{188}}{2}
144 ni 44 ga qo'shish.
x=\frac{-12±2\sqrt{47}}{2}
188 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{47}-12}{2}
x=\frac{-12±2\sqrt{47}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{47} ga qo'shish.
x=\sqrt{47}-6
-12+2\sqrt{47} ni 2 ga bo'lish.
x=\frac{-2\sqrt{47}-12}{2}
x=\frac{-12±2\sqrt{47}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{47} ni ayirish.
x=-\sqrt{47}-6
-12-2\sqrt{47} ni 2 ga bo'lish.
x^{2}+12x-11=\left(x-\left(\sqrt{47}-6\right)\right)\left(x-\left(-\sqrt{47}-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -6+\sqrt{47} ga va x_{2} uchun -6-\sqrt{47} ga bo‘ling.