Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=12 ab=1\times 36=36
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx+36 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,36 2,18 3,12 4,9 6,6
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 36-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Har bir juftlik yigʻindisini hisoblang.
a=6 b=6
Yechim – 12 yigʻindisini beruvchi juftlik.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36 ni \left(x^{2}+6x\right)+\left(6x+36\right) sifatida qaytadan yozish.
x\left(x+6\right)+6\left(x+6\right)
Birinchi guruhda x ni va ikkinchi guruhda 6 ni faktordan chiqaring.
\left(x+6\right)\left(x+6\right)
Distributiv funktsiyasidan foydalangan holda x+6 umumiy terminini chiqaring.
\left(x+6\right)^{2}
Binom kvadrat sifatid qayta yozish.
factor(x^{2}+12x+36)
Ushbu trinomial qiymati trinomial kvadratiga ega, balki umumiy omilga ko'paytirilgan. Trinomial kvadratlar old va oxirgi shartlarning kvadrat ildizini topib omili yechilishi mumkin.
\sqrt{36}=6
Ergashuvchi shartning kvadrat ildizini topish, 36.
\left(x+6\right)^{2}
Trinomal kvadrat bu binomialning kvadrati bo'lib, tinomial kvadratning o'rta shart belgisi bilan ifodalangan belgiga ega old va ergashuvchi shartlarning kvadratidagi ildiz yig'indisi yoki farqidir.
x^{2}+12x+36=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-144}}{2}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{0}}{2}
144 ni -144 ga qo'shish.
x=\frac{-12±0}{2}
0 ning kvadrat ildizini chiqarish.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -6 ga va x_{2} uchun -6 ga bo‘ling.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.