x uchun yechish (complex solution)
x=\sqrt{14}-6\approx -2,258342613
x=-\left(\sqrt{14}+6\right)\approx -9,741657387
x uchun yechish
x=\sqrt{14}-6\approx -2,258342613
x=-\sqrt{14}-6\approx -9,741657387
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+12x+22=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 22}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 22 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 22}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-88}}{2}
-4 ni 22 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{56}}{2}
144 ni -88 ga qo'shish.
x=\frac{-12±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-12}{2}
x=\frac{-12±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-6
-12+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-12}{2}
x=\frac{-12±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-6
-12-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-6 x=-\sqrt{14}-6
Tenglama yechildi.
x^{2}+12x+22=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+12x+22-22=-22
Tenglamaning ikkala tarafidan 22 ni ayirish.
x^{2}+12x=-22
O‘zidan 22 ayirilsa 0 qoladi.
x^{2}+12x+6^{2}=-22+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=-22+36
6 kvadratini chiqarish.
x^{2}+12x+36=14
-22 ni 36 ga qo'shish.
\left(x+6\right)^{2}=14
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=\sqrt{14} x+6=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-6 x=-\sqrt{14}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x^{2}+12x+22=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 22}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 22 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 22}}{2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-88}}{2}
-4 ni 22 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{56}}{2}
144 ni -88 ga qo'shish.
x=\frac{-12±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-12}{2}
x=\frac{-12±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-6
-12+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-12}{2}
x=\frac{-12±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-6
-12-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-6 x=-\sqrt{14}-6
Tenglama yechildi.
x^{2}+12x+22=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+12x+22-22=-22
Tenglamaning ikkala tarafidan 22 ni ayirish.
x^{2}+12x=-22
O‘zidan 22 ayirilsa 0 qoladi.
x^{2}+12x+6^{2}=-22+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=-22+36
6 kvadratini chiqarish.
x^{2}+12x+36=14
-22 ni 36 ga qo'shish.
\left(x+6\right)^{2}=14
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=\sqrt{14} x+6=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-6 x=-\sqrt{14}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}