Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+100x-560=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-100±\sqrt{100^{2}-4\left(-560\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{10000-4\left(-560\right)}}{2}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+2240}}{2}
-4 ni -560 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{12240}}{2}
10000 ni 2240 ga qo'shish.
x=\frac{-100±12\sqrt{85}}{2}
12240 ning kvadrat ildizini chiqarish.
x=\frac{12\sqrt{85}-100}{2}
x=\frac{-100±12\sqrt{85}}{2} tenglamasini yeching, bunda ± musbat. -100 ni 12\sqrt{85} ga qo'shish.
x=6\sqrt{85}-50
-100+12\sqrt{85} ni 2 ga bo'lish.
x=\frac{-12\sqrt{85}-100}{2}
x=\frac{-100±12\sqrt{85}}{2} tenglamasini yeching, bunda ± manfiy. -100 dan 12\sqrt{85} ni ayirish.
x=-6\sqrt{85}-50
-100-12\sqrt{85} ni 2 ga bo'lish.
x^{2}+100x-560=\left(x-\left(6\sqrt{85}-50\right)\right)\left(x-\left(-6\sqrt{85}-50\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -50+6\sqrt{85} ga va x_{2} uchun -50-6\sqrt{85} ga bo‘ling.