Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+10x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-10±\sqrt{10^{2}-4\times 5}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{100-4\times 5}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-20}}{2}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{80}}{2}
100 ni -20 ga qo'shish.
x=\frac{-10±4\sqrt{5}}{2}
80 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{5}-10}{2}
x=\frac{-10±4\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 4\sqrt{5} ga qo'shish.
x=2\sqrt{5}-5
-10+4\sqrt{5} ni 2 ga bo'lish.
x=\frac{-4\sqrt{5}-10}{2}
x=\frac{-10±4\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 4\sqrt{5} ni ayirish.
x=-2\sqrt{5}-5
-10-4\sqrt{5} ni 2 ga bo'lish.
x^{2}+10x+5=\left(x-\left(2\sqrt{5}-5\right)\right)\left(x-\left(-2\sqrt{5}-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -5+2\sqrt{5} ga va x_{2} uchun -5-2\sqrt{5} ga bo‘ling.