Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+10x+25=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+10x+25-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+10x+25-7=0
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}+10x+18=0
25 dan 7 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 18}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va 18 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 18}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-72}}{2}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{28}}{2}
100 ni -72 ga qo'shish.
x=\frac{-10±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-10}{2}
x=\frac{-10±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-5
-10+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-10}{2}
x=\frac{-10±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-5
-10-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Tenglama yechildi.
\left(x+5\right)^{2}=7
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{7} x+5=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
x^{2}+10x+25=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+10x+25-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+10x+25-7=0
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}+10x+18=0
25 dan 7 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 18}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va 18 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 18}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-72}}{2}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{28}}{2}
100 ni -72 ga qo'shish.
x=\frac{-10±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-10}{2}
x=\frac{-10±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-5
-10+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-10}{2}
x=\frac{-10±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-5
-10-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Tenglama yechildi.
\left(x+5\right)^{2}=7
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{7} x+5=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.