Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+x^{2}+2x+1=4191
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}+2x+1=4191
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+2x+1-4191=0
Ikkala tarafdan 4191 ni ayirish.
2x^{2}+2x-4190=0
-4190 olish uchun 1 dan 4191 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-4190\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 2 ni b va -4190 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 2\left(-4190\right)}}{2\times 2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-8\left(-4190\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+33520}}{2\times 2}
-8 ni -4190 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{33524}}{2\times 2}
4 ni 33520 ga qo'shish.
x=\frac{-2±34\sqrt{29}}{2\times 2}
33524 ning kvadrat ildizini chiqarish.
x=\frac{-2±34\sqrt{29}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{34\sqrt{29}-2}{4}
x=\frac{-2±34\sqrt{29}}{4} tenglamasini yeching, bunda ± musbat. -2 ni 34\sqrt{29} ga qo'shish.
x=\frac{17\sqrt{29}-1}{2}
-2+34\sqrt{29} ni 4 ga bo'lish.
x=\frac{-34\sqrt{29}-2}{4}
x=\frac{-2±34\sqrt{29}}{4} tenglamasini yeching, bunda ± manfiy. -2 dan 34\sqrt{29} ni ayirish.
x=\frac{-17\sqrt{29}-1}{2}
-2-34\sqrt{29} ni 4 ga bo'lish.
x=\frac{17\sqrt{29}-1}{2} x=\frac{-17\sqrt{29}-1}{2}
Tenglama yechildi.
x^{2}+x^{2}+2x+1=4191
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}+2x+1=4191
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+2x=4191-1
Ikkala tarafdan 1 ni ayirish.
2x^{2}+2x=4190
4190 olish uchun 4191 dan 1 ni ayirish.
\frac{2x^{2}+2x}{2}=\frac{4190}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{2}{2}x=\frac{4190}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{4190}{2}
2 ni 2 ga bo'lish.
x^{2}+x=2095
4190 ni 2 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2095+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=2095+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{8381}{4}
2095 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{8381}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{8381}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{17\sqrt{29}}{2} x+\frac{1}{2}=-\frac{17\sqrt{29}}{2}
Qisqartirish.
x=\frac{17\sqrt{29}-1}{2} x=\frac{-17\sqrt{29}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.