x uchun yechish (complex solution)
x=7+\sqrt{17}i\approx 7+4,123105626i
x=-\sqrt{17}i+7\approx 7-4,123105626i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+196-28x+x^{2}=8^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(14-x\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}+196-28x=8^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+196-28x=64
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
2x^{2}+196-28x-64=0
Ikkala tarafdan 64 ni ayirish.
2x^{2}+132-28x=0
132 olish uchun 196 dan 64 ni ayirish.
2x^{2}-28x+132=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 132}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -28 ni b va 132 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 132}}{2\times 2}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 132}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{784-1056}}{2\times 2}
-8 ni 132 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{-272}}{2\times 2}
784 ni -1056 ga qo'shish.
x=\frac{-\left(-28\right)±4\sqrt{17}i}{2\times 2}
-272 ning kvadrat ildizini chiqarish.
x=\frac{28±4\sqrt{17}i}{2\times 2}
-28 ning teskarisi 28 ga teng.
x=\frac{28±4\sqrt{17}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{28+4\sqrt{17}i}{4}
x=\frac{28±4\sqrt{17}i}{4} tenglamasini yeching, bunda ± musbat. 28 ni 4i\sqrt{17} ga qo'shish.
x=7+\sqrt{17}i
28+4i\sqrt{17} ni 4 ga bo'lish.
x=\frac{-4\sqrt{17}i+28}{4}
x=\frac{28±4\sqrt{17}i}{4} tenglamasini yeching, bunda ± manfiy. 28 dan 4i\sqrt{17} ni ayirish.
x=-\sqrt{17}i+7
28-4i\sqrt{17} ni 4 ga bo'lish.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
Tenglama yechildi.
x^{2}+196-28x+x^{2}=8^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(14-x\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}+196-28x=8^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+196-28x=64
2 daraja ko‘rsatkichini 8 ga hisoblang va 64 ni qiymatni oling.
2x^{2}-28x=64-196
Ikkala tarafdan 196 ni ayirish.
2x^{2}-28x=-132
-132 olish uchun 64 dan 196 ni ayirish.
\frac{2x^{2}-28x}{2}=-\frac{132}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{132}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-14x=-\frac{132}{2}
-28 ni 2 ga bo'lish.
x^{2}-14x=-66
-132 ni 2 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=-66+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-66+49
-7 kvadratini chiqarish.
x^{2}-14x+49=-17
-66 ni 49 ga qo'shish.
\left(x-7\right)^{2}=-17
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\sqrt{17}i x-7=-\sqrt{17}i
Qisqartirish.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
7 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}