Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+15x-425=46
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+15x-425-46=46-46
Tenglamaning ikkala tarafidan 46 ni ayirish.
x^{2}+15x-425-46=0
O‘zidan 46 ayirilsa 0 qoladi.
x^{2}+15x-471=0
-425 dan 46 ni ayirish.
x=\frac{-15±\sqrt{15^{2}-4\left(-471\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 15 ni b va -471 ni c bilan almashtiring.
x=\frac{-15±\sqrt{225-4\left(-471\right)}}{2}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225+1884}}{2}
-4 ni -471 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{2109}}{2}
225 ni 1884 ga qo'shish.
x=\frac{\sqrt{2109}-15}{2}
x=\frac{-15±\sqrt{2109}}{2} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{2109} ga qo'shish.
x=\frac{-\sqrt{2109}-15}{2}
x=\frac{-15±\sqrt{2109}}{2} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{2109} ni ayirish.
x=\frac{\sqrt{2109}-15}{2} x=\frac{-\sqrt{2109}-15}{2}
Tenglama yechildi.
x^{2}+15x-425=46
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+15x-425-\left(-425\right)=46-\left(-425\right)
425 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+15x=46-\left(-425\right)
O‘zidan -425 ayirilsa 0 qoladi.
x^{2}+15x=471
46 dan -425 ni ayirish.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=471+\left(\frac{15}{2}\right)^{2}
15 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{2} olish uchun. Keyin, \frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+15x+\frac{225}{4}=471+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{2} kvadratini chiqarish.
x^{2}+15x+\frac{225}{4}=\frac{2109}{4}
471 ni \frac{225}{4} ga qo'shish.
\left(x+\frac{15}{2}\right)^{2}=\frac{2109}{4}
x^{2}+15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{2109}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{15}{2}=\frac{\sqrt{2109}}{2} x+\frac{15}{2}=-\frac{\sqrt{2109}}{2}
Qisqartirish.
x=\frac{\sqrt{2109}-15}{2} x=\frac{-\sqrt{2109}-15}{2}
Tenglamaning ikkala tarafidan \frac{15}{2} ni ayirish.