x uchun yechish (complex solution)
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}\approx -1,224744871+1,870828693i
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}\approx -1,224744871-1,870828693i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+\sqrt{6}x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\sqrt{6}±\sqrt{\left(\sqrt{6}\right)^{2}-4\times 5}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \sqrt{6} ni b va 5 ni c bilan almashtiring.
x=\frac{-\sqrt{6}±\sqrt{6-4\times 5}}{2}
\sqrt{6} kvadratini chiqarish.
x=\frac{-\sqrt{6}±\sqrt{6-20}}{2}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\sqrt{6}±\sqrt{-14}}{2}
6 ni -20 ga qo'shish.
x=\frac{-\sqrt{6}±\sqrt{14}i}{2}
-14 ning kvadrat ildizini chiqarish.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}
x=\frac{-\sqrt{6}±\sqrt{14}i}{2} tenglamasini yeching, bunda ± musbat. -\sqrt{6} ni i\sqrt{14} ga qo'shish.
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
x=\frac{-\sqrt{6}±\sqrt{14}i}{2} tenglamasini yeching, bunda ± manfiy. -\sqrt{6} dan i\sqrt{14} ni ayirish.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Tenglama yechildi.
x^{2}+\sqrt{6}x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+\sqrt{6}x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
x^{2}+\sqrt{6}x=-5
O‘zidan 5 ayirilsa 0 qoladi.
x^{2}+\sqrt{6}x+\left(\frac{\sqrt{6}}{2}\right)^{2}=-5+\left(\frac{\sqrt{6}}{2}\right)^{2}
\sqrt{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{\sqrt{6}}{2} olish uchun. Keyin, \frac{\sqrt{6}}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\sqrt{6}x+\frac{3}{2}=-5+\frac{3}{2}
\frac{\sqrt{6}}{2} kvadratini chiqarish.
x^{2}+\sqrt{6}x+\frac{3}{2}=-\frac{7}{2}
-5 ni \frac{3}{2} ga qo'shish.
\left(x+\frac{\sqrt{6}}{2}\right)^{2}=-\frac{7}{2}
x^{2}+\sqrt{6}x+\frac{3}{2} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{\sqrt{6}}{2}\right)^{2}}=\sqrt{-\frac{7}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{\sqrt{6}}{2}=\frac{\sqrt{14}i}{2} x+\frac{\sqrt{6}}{2}=-\frac{\sqrt{14}i}{2}
Qisqartirish.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Tenglamaning ikkala tarafidan \frac{\sqrt{6}}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}