x uchun yechish (complex solution)
x\in e^{\frac{\pi i}{6}}\sqrt[12]{1-y^{2}},\sqrt[12]{1-y^{2}},e^{\frac{\pi i}{3}}\sqrt[12]{1-y^{2}},i\sqrt[12]{1-y^{2}},e^{\frac{2i\pi }{3}}\sqrt[12]{1-y^{2}},e^{\frac{5i\pi }{6}}\sqrt[12]{1-y^{2}},-\sqrt[12]{1-y^{2}},e^{\frac{7i\pi }{6}}\sqrt[12]{1-y^{2}},e^{\frac{4i\pi }{3}}\sqrt[12]{1-y^{2}},-i\sqrt[12]{1-y^{2}},e^{\frac{5i\pi }{3}}\sqrt[12]{1-y^{2}},e^{\frac{11i\pi }{6}}\sqrt[12]{1-y^{2}}
y uchun yechish (complex solution)
y=-\sqrt{\left(1-x^{4}\right)\left(x^{4}-x^{2}+1\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)}
y=\sqrt{\left(1-x^{4}\right)\left(x^{4}-x^{2}+1\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)}
x uchun yechish
\left\{\begin{matrix}x=\sqrt[6]{-\sqrt{1-y^{2}}}\text{; }x=-\sqrt[6]{-\sqrt{1-y^{2}}}\text{, }&|y|=1\\x=\sqrt[12]{1-y^{2}}\text{; }x=-\sqrt[12]{1-y^{2}}\text{, }&|y|\leq 1\end{matrix}\right,
y uchun yechish
y=\sqrt{\left(1-x^{4}\right)\left(x^{4}-x^{2}+1\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)}
y=-\sqrt{\left(1-x^{4}\right)\left(x^{4}-x^{2}+1\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)}\text{, }|x|\leq 1
Grafik
Viktorina
Algebra
x ^ { 12 } + y ^ { 2 } = 1
Baham ko'rish
Klipbordga nusxa olish
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}