Asosiy tarkibga oʻtish
x_5 uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(4x+17\right)x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Tenglamaning ikkala tarafini 4x+17 ga ko'paytirish.
4xx^{0}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
4x+17 ga x^{0} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{1}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 0 ni qo‘shib, 1 ni oling.
4x+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
1 daraja ko‘rsatkichini x ga hisoblang va x ni qiymatni oling.
4x+17x^{0}=30+16+1\sqrt{8}+5^{2}x_{5}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
4x+17x^{0}=46+1\sqrt{8}+5^{2}x_{5}
46 olish uchun 30 va 16'ni qo'shing.
4x+17x^{0}=46+1\times 2\sqrt{2}+5^{2}x_{5}
Faktor: 8=2^{2}\times 2. \sqrt{2^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
4x+17x^{0}=46+2\sqrt{2}+5^{2}x_{5}
2 hosil qilish uchun 1 va 2 ni ko'paytirish.
4x+17x^{0}=46+2\sqrt{2}+25x_{5}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
46+2\sqrt{2}+25x_{5}=4x+17x^{0}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2\sqrt{2}+25x_{5}=4x+17x^{0}-46
Ikkala tarafdan 46 ni ayirish.
25x_{5}=4x+17x^{0}-46-2\sqrt{2}
Ikkala tarafdan 2\sqrt{2} ni ayirish.
25x_{5}=4x-2\sqrt{2}-29
Tenglama standart shaklda.
\frac{25x_{5}}{25}=\frac{4x-2\sqrt{2}-29}{25}
Ikki tarafini 25 ga bo‘ling.
x_{5}=\frac{4x-2\sqrt{2}-29}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.