Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=x^{2}+4x+4-1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x=x^{2}+4x+3
3 olish uchun 4 dan 1 ni ayirish.
x-x^{2}=4x+3
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}-4x=3
Ikkala tarafdan 4x ni ayirish.
-3x-x^{2}=3
-3x ni olish uchun x va -4x ni birlashtirish.
-3x-x^{2}-3=0
Ikkala tarafdan 3 ni ayirish.
-x^{2}-3x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -3 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-3\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9-12}}{2\left(-1\right)}
4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{-3}}{2\left(-1\right)}
9 ni -12 ga qo'shish.
x=\frac{-\left(-3\right)±\sqrt{3}i}{2\left(-1\right)}
-3 ning kvadrat ildizini chiqarish.
x=\frac{3±\sqrt{3}i}{2\left(-1\right)}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{3}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{3+\sqrt{3}i}{-2}
x=\frac{3±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i-3}{2}
3+i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i+3}{-2}
x=\frac{3±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{3} ni ayirish.
x=\frac{-3+\sqrt{3}i}{2}
3-i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i-3}{2} x=\frac{-3+\sqrt{3}i}{2}
Tenglama yechildi.
x=x^{2}+4x+4-1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x=x^{2}+4x+3
3 olish uchun 4 dan 1 ni ayirish.
x-x^{2}=4x+3
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}-4x=3
Ikkala tarafdan 4x ni ayirish.
-3x-x^{2}=3
-3x ni olish uchun x va -4x ni birlashtirish.
-x^{2}-3x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-3x}{-1}=\frac{3}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{3}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{3}{-1}
-3 ni -1 ga bo'lish.
x^{2}+3x=-3
3 ni -1 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
-3 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.