y uchun yechish
y=\frac{x^{2}}{3}+\frac{1}{6}
x\geq 0
x uchun yechish (complex solution)
x=\frac{\sqrt{12y-2}}{2}
y uchun yechish (complex solution)
y=\frac{x^{2}}{3}+\frac{1}{6}
arg(x)<\pi \text{ or }x=0
x uchun yechish
x=\frac{\sqrt{12y-2}}{2}
y\geq \frac{1}{6}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{3y-\frac{1}{2}}=x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
3y-\frac{1}{2}=x^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
3y-\frac{1}{2}-\left(-\frac{1}{2}\right)=x^{2}-\left(-\frac{1}{2}\right)
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
3y=x^{2}-\left(-\frac{1}{2}\right)
O‘zidan -\frac{1}{2} ayirilsa 0 qoladi.
3y=x^{2}+\frac{1}{2}
x^{2} dan -\frac{1}{2} ni ayirish.
\frac{3y}{3}=\frac{x^{2}+\frac{1}{2}}{3}
Ikki tarafini 3 ga bo‘ling.
y=\frac{x^{2}+\frac{1}{2}}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
y=\frac{x^{2}}{3}+\frac{1}{6}
x^{2}+\frac{1}{2} ni 3 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}