x uchun yechish (complex solution)
x=\frac{5+\sqrt{31}i}{2}\approx 2,5+2,783882181i
x=\frac{-\sqrt{31}i+5}{2}\approx 2,5-2,783882181i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x=\frac{x-14}{x-4}
-14 olish uchun 2 dan 16 ni ayirish.
x-\frac{x-14}{x-4}=0
Ikkala tarafdan \frac{x-14}{x-4} ni ayirish.
\frac{x\left(x-4\right)}{x-4}-\frac{x-14}{x-4}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{x\left(x-4\right)-\left(x-14\right)}{x-4}=0
\frac{x\left(x-4\right)}{x-4} va \frac{x-14}{x-4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-4x-x+14}{x-4}=0
x\left(x-4\right)-\left(x-14\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-5x+14}{x-4}=0
x^{2}-4x-x+14 kabi iboralarga o‘xshab birlashtiring.
x^{2}-5x+14=0
x qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-4 ga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 14}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-31}}{2}
25 ni -56 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{31}i}{2}
-31 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{31}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{31}i}{2}
x=\frac{5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{31} ga qo'shish.
x=\frac{-\sqrt{31}i+5}{2}
x=\frac{5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{31} ni ayirish.
x=\frac{5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+5}{2}
Tenglama yechildi.
x=\frac{x-14}{x-4}
-14 olish uchun 2 dan 16 ni ayirish.
x-\frac{x-14}{x-4}=0
Ikkala tarafdan \frac{x-14}{x-4} ni ayirish.
\frac{x\left(x-4\right)}{x-4}-\frac{x-14}{x-4}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{x\left(x-4\right)-\left(x-14\right)}{x-4}=0
\frac{x\left(x-4\right)}{x-4} va \frac{x-14}{x-4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-4x-x+14}{x-4}=0
x\left(x-4\right)-\left(x-14\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-5x+14}{x-4}=0
x^{2}-4x-x+14 kabi iboralarga o‘xshab birlashtiring.
x^{2}-5x+14=0
x qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-4 ga ko'paytirish.
x^{2}-5x=-14
Ikkala tarafdan 14 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-14+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-14+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{31}{4}
-14 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{31}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{31}i}{2} x-\frac{5}{2}=-\frac{\sqrt{31}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}