Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=\frac{x-14}{x-4}
-14 olish uchun 2 dan 16 ni ayirish.
x-\frac{x-14}{x-4}=0
Ikkala tarafdan \frac{x-14}{x-4} ni ayirish.
\frac{x\left(x-4\right)}{x-4}-\frac{x-14}{x-4}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{x\left(x-4\right)-\left(x-14\right)}{x-4}=0
\frac{x\left(x-4\right)}{x-4} va \frac{x-14}{x-4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-4x-x+14}{x-4}=0
x\left(x-4\right)-\left(x-14\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-5x+14}{x-4}=0
x^{2}-4x-x+14 kabi iboralarga o‘xshab birlashtiring.
x^{2}-5x+14=0
x qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-4 ga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 14}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-31}}{2}
25 ni -56 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{31}i}{2}
-31 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{31}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{31}i}{2}
x=\frac{5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{31} ga qo'shish.
x=\frac{-\sqrt{31}i+5}{2}
x=\frac{5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{31} ni ayirish.
x=\frac{5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+5}{2}
Tenglama yechildi.
x=\frac{x-14}{x-4}
-14 olish uchun 2 dan 16 ni ayirish.
x-\frac{x-14}{x-4}=0
Ikkala tarafdan \frac{x-14}{x-4} ni ayirish.
\frac{x\left(x-4\right)}{x-4}-\frac{x-14}{x-4}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{x-4}{x-4} marotabaga ko'paytirish.
\frac{x\left(x-4\right)-\left(x-14\right)}{x-4}=0
\frac{x\left(x-4\right)}{x-4} va \frac{x-14}{x-4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-4x-x+14}{x-4}=0
x\left(x-4\right)-\left(x-14\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-5x+14}{x-4}=0
x^{2}-4x-x+14 kabi iboralarga o‘xshab birlashtiring.
x^{2}-5x+14=0
x qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-4 ga ko'paytirish.
x^{2}-5x=-14
Ikkala tarafdan 14 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-14+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-14+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{31}{4}
-14 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{31}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{31}i}{2} x-\frac{5}{2}=-\frac{\sqrt{31}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.